Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O(ε^{-7/4})$ Complexity (2201.11411v4)

Published 27 Jan 2022 in math.OC and cs.LG

Abstract: This paper studies accelerated gradient methods for nonconvex optimization with Lipschitz continuous gradient and Hessian. We propose two simple accelerated gradient methods, restarted accelerated gradient descent (AGD) and restarted heavy ball (HB) method, and establish that our methods achieve an $\epsilon$-approximate first-order stationary point within $O(\epsilon{-7/4})$ number of gradient evaluations by elementary proofs. Theoretically, our complexity does not hide any polylogarithmic factors, and thus it improves over the best known one by the $O(\log\frac{1}{\epsilon})$ factor. Our algorithms are simple in the sense that they only consist of Nesterov's classical AGD or Polyak's HB iterations, as well as a restart mechanism. They do not invoke negative curvature exploitation or minimization of regularized surrogate functions as the subroutines. In contrast with existing analysis, our elementary proofs use less advanced techniques and do not invoke the analysis of strongly convex AGD or HB. Code is avaliable at https://github.com/lihuanML/RestartAGD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Huan Li (102 papers)
  2. Zhouchen Lin (158 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.