Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Distributed Learning in Stochastic Non-cooperative Games without Information Exchange (2201.11324v2)

Published 27 Jan 2022 in cs.GT

Abstract: In this work, we study stochastic non-cooperative games, where only noisy black-box function evaluations are available to estimate the cost function for each player. Since each player's cost function depends on both its own decision variables and its rivals' decision variables, local information needs to be exchanged through a center/network in most existing work for seeking the Nash equilibrium. We propose a new stochastic distributed learning algorithm that does not require communications among players. The proposed algorithm uses simultaneous perturbation method to estimate the gradient of each cost function, and uses mirror descent method to search for the Nash equilibrium. We provide asymptotic analysis for the bias and variance of gradient estimates, and show the proposed algorithm converges to the Nash equilibrium in mean square for the class of strictly monotone games at a rate faster than the existing algorithms. The effectiveness of the proposed method is buttressed in a numerical experiment.

Summary

We haven't generated a summary for this paper yet.