Papers
Topics
Authors
Recent
2000 character limit reached

Transformer Module Networks for Systematic Generalization in Visual Question Answering (2201.11316v2)

Published 27 Jan 2022 in cs.CV and cs.LG

Abstract: Transformers achieve great performance on Visual Question Answering (VQA). However, their systematic generalization capabilities, i.e., handling novel combinations of known concepts, is unclear. We reveal that Neural Module Networks (NMNs), i.e., question-specific compositions of modules that tackle a sub-task, achieve better or similar systematic generalization performance than the conventional Transformers, even though NMNs' modules are CNN-based. In order to address this shortcoming of Transformers with respect to NMNs, in this paper we investigate whether and how modularity can bring benefits to Transformers. Namely, we introduce Transformer Module Network (TMN), a novel NMN based on compositions of Transformer modules. TMNs achieve state-of-the-art systematic generalization performance in three VQA datasets, improving more than 30% over standard Transformers for novel compositions of sub-tasks. We show that not only the module composition but also the module specialization for each sub-task are the key of such performance gain.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.