Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Higher-Order Semantic Dependency Parser (2201.11312v1)

Published 27 Jan 2022 in cs.CL

Abstract: Higher-order features bring significant accuracy gains in semantic dependency parsing. However, modeling higher-order features with exact inference is NP-hard. Graph neural networks (GNNs) have been demonstrated to be an effective tool for solving NP-hard problems with approximate inference in many graph learning tasks. Inspired by the success of GNNs, we investigate building a higher-order semantic dependency parser by applying GNNs. Instead of explicitly extracting higher-order features from intermediate parsing graphs, GNNs aggregate higher-order information concisely by stacking multiple GNN layers. Experimental results show that our model outperforms the previous state-of-the-art parser on the SemEval 2015 Task 18 English datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.