Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Jointly Learning Knowledge Embedding and Neighborhood Consensus with Relational Knowledge Distillation for Entity Alignment (2201.11249v1)

Published 25 Jan 2022 in cs.LG, cs.AI, and cs.CL

Abstract: Entity alignment aims at integrating heterogeneous knowledge from different knowledge graphs. Recent studies employ embedding-based methods by first learning the representation of Knowledge Graphs and then performing entity alignment via measuring the similarity between entity embeddings. However, they failed to make good use of the relation semantic information due to the trade-off problem caused by the different objectives of learning knowledge embedding and neighborhood consensus. To address this problem, we propose Relational Knowledge Distillation for Entity Alignment (RKDEA), a Graph Convolutional Network (GCN) based model equipped with knowledge distillation for entity alignment. We adopt GCN-based models to learn the representation of entities by considering the graph structure and incorporating the relation semantic information into GCN via knowledge distillation. Then, we introduce a novel adaptive mechanism to transfer relational knowledge so as to jointly learn entity embedding and neighborhood consensus. Experimental results on several benchmarking datasets demonstrate the effectiveness of our proposed model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube