Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gap Minimization for Knowledge Sharing and Transfer (2201.11231v2)

Published 26 Jan 2022 in cs.LG and cs.AI

Abstract: Learning from multiple related tasks by knowledge sharing and transfer has become increasingly relevant over the last two decades. In order to successfully transfer information from one task to another, it is critical to understand the similarities and differences between the domains. In this paper, we introduce the notion of \emph{performance gap}, an intuitive and novel measure of the distance between learning tasks. Unlike existing measures which are used as tools to bound the difference of expected risks between tasks (e.g., $\mathcal{H}$-divergence or discrepancy distance), we theoretically show that the performance gap can be viewed as a data- and algorithm-dependent regularizer, which controls the model complexity and leads to finer guarantees. More importantly, it also provides new insights and motivates a novel principle for designing strategies for knowledge sharing and transfer: gap minimization. We instantiate this principle with two algorithms: 1. gapBoost, a novel and principled boosting algorithm that explicitly minimizes the performance gap between source and target domains for transfer learning; and 2. gapMTNN, a representation learning algorithm that reformulates gap minimization as semantic conditional matching for multitask learning. Our extensive evaluation on both transfer learning and multitask learning benchmark data sets shows that our methods outperform existing baselines.

Citations (9)

Summary

We haven't generated a summary for this paper yet.