Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Server Learning Rate Tuning for Coded Federated Dropout (2201.11036v4)

Published 26 Jan 2022 in cs.LG

Abstract: In cross-device Federated Learning (FL), clients with low computational power train a common\linebreak[4] machine model by exchanging parameters via updates instead of potentially private data. Federated Dropout (FD) is a technique that improves the communication efficiency of a FL session by selecting a \emph{subset} of model parameters to be updated in each training round. However, compared to standard FL, FD produces considerably lower accuracy and faces a longer convergence time. In this paper, we leverage \textit{coding theory} to enhance FD by allowing different sub-models to be used at each client. We also show that by carefully tuning the server learning rate hyper-parameter, we can achieve higher training speed while also achieving up to the same final accuracy as the no dropout case. For the EMNIST dataset, our mechanism achieves 99.6\% of the final accuracy of the no dropout case while requiring $2.43\times$ less bandwidth to achieve this level of accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube