Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Numerical Approximation for Stochastic Nonlinear Fractional Diffusion Equation Driven by Rough Noise (2201.10897v1)

Published 26 Jan 2022 in math.NA and cs.NA

Abstract: In this work, we are interested in building the fully discrete scheme for stochastic fractional diffusion equation driven by fractional Brownian sheet which is temporally and spatially fractional with Hurst parameters $H_{1}, H_{2} \in(0,\frac{1}{2}]$. We first provide the regularity of the solution. Then we employ the Wong-Zakai approximation to regularize the rough noise and discuss the convergence of the approximation. Next, the finite element and backward Euler convolution quadrature methods are used to discretize spatial and temporal operators for the obtained regularized equation, and the detailed error analyses are developed. Finally, some numerical examples are presented to confirm the theory.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.