Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On Sharp Stochastic Zeroth Order Hessian Estimators over Riemannian Manifolds (2201.10780v3)

Published 26 Jan 2022 in stat.ML, cs.LG, cs.NA, and math.NA

Abstract: We study Hessian estimators for functions defined over an $n$-dimensional complete analytic Riemannian manifold. We introduce new stochastic zeroth-order Hessian estimators using $O (1)$ function evaluations. We show that, for an analytic real-valued function $f$, our estimator achieves a bias bound of order $ O \left( \gamma \delta2 \right) $, where $ \gamma $ depends on both the Levi-Civita connection and function $f$, and $\delta$ is the finite difference step size. To the best of our knowledge, our results provide the first bias bound for Hessian estimators that explicitly depends on the geometry of the underlying Riemannian manifold. We also study downstream computations based on our Hessian estimators. The supremacy of our method is evidenced by empirical evaluations.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.