Papers
Topics
Authors
Recent
2000 character limit reached

Graph Neural Networks with Dynamic and Static Representations for Social Recommendation (2201.10751v2)

Published 26 Jan 2022 in cs.IR, cs.LG, and cs.SI

Abstract: Recommender systems based on graph neural networks receive increasing research interest due to their excellent ability to learn a variety of side information including social networks. However, previous works usually focus on modeling users, not much attention is paid to items. Moreover, the possible changes in the attraction of items over time, which is like the dynamic interest of users are rarely considered, and neither do the correlations among items. To overcome these limitations, this paper proposes graph neural networks with dynamic and static representations for social recommendation (GNN-DSR), which considers both dynamic and static representations of users and items and incorporates their relational influence. GNN-DSR models the short-term dynamic and long-term static interactional representations of the user's interest and the item's attraction, respectively. Furthermore, the attention mechanism is used to aggregate the social influence of users on the target user and the correlative items' influence on a given item. The final latent factors of user and item are combined to make a prediction. Experiments on three real-world recommender system datasets validate the effectiveness of GNN-DSR.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.