Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

CrossRectify: Leveraging Disagreement for Semi-supervised Object Detection (2201.10734v2)

Published 26 Jan 2022 in cs.CV

Abstract: Semi-supervised object detection has recently achieved substantial progress. As a mainstream solution, the self-labeling-based methods train the detector on both labeled data and unlabeled data with pseudo labels predicted by the detector itself, but their performances are always limited. Through experimental analysis, we reveal the underlying reason is that the detector is misguided by the incorrect pseudo labels predicted by itself (dubbed self-errors). These self-errors can hurt performance even worse than random-errors, and can be neither discerned nor rectified during the self-labeling process. In this paper, we propose an effective detection framework named CrossRectify, to obtain accurate pseudo labels by simultaneously training two detectors with different initial parameters. Specifically, the proposed approach leverages the disagreements between detectors to discern the self-errors and refines the pseudo label quality by the proposed cross-rectifying mechanism. Extensive experiments show that CrossRectify achieves outperforming performances over various detector structures on 2D and 3D detection benchmarks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.