Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distantly supervised end-to-end medical entity extraction from electronic health records with human-level quality (2201.10463v1)

Published 25 Jan 2022 in cs.CL and cs.AI

Abstract: Medical entity extraction (EE) is a standard procedure used as a first stage in medical texts processing. Usually Medical EE is a two-step process: named entity recognition (NER) and named entity normalization (NEN). We propose a novel method of doing medical EE from electronic health records (EHR) as a single-step multi-label classification task by fine-tuning a transformer model pretrained on a large EHR dataset. Our model is trained end-to-end in an distantly supervised manner using targets automatically extracted from medical knowledge base. We show that our model learns to generalize for entities that are present frequently enough, achieving human-level classification quality for most frequent entities. Our work demonstrates that medical entity extraction can be done end-to-end without human supervision and with human quality given the availability of a large enough amount of unlabeled EHR and a medical knowledge base.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.