Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional entropy minimization principle for learning domain invariant representation features (2201.10460v4)

Published 25 Jan 2022 in cs.LG and cs.AI

Abstract: Invariance-principle-based methods such as Invariant Risk Minimization (IRM), have recently emerged as promising approaches for Domain Generalization (DG). Despite promising theory, such approaches fail in common classification tasks due to the mixing of true invariant features and spurious invariant features. To address this, we propose a framework based on the conditional entropy minimization (CEM) principle to filter-out the spurious invariant features leading to a new algorithm with a better generalization capability. We show that our proposed approach is closely related to the well-known Information Bottleneck (IB) framework and prove that under certain assumptions, entropy minimization can exactly recover the true invariant features. Our approach provides competitive classification accuracy compared to recent theoretically-principled state-of-the-art alternatives across several DG datasets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.