Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neural Architecture Search for Spiking Neural Networks (2201.10355v3)

Published 23 Jan 2022 in cs.NE, cs.AI, cs.LG, and eess.SP

Abstract: Spiking Neural Networks (SNNs) have gained huge attention as a potential energy-efficient alternative to conventional Artificial Neural Networks (ANNs) due to their inherent high-sparsity activation. However, most prior SNN methods use ANN-like architectures (e.g., VGG-Net or ResNet), which could provide sub-optimal performance for temporal sequence processing of binary information in SNNs. To address this, in this paper, we introduce a novel Neural Architecture Search (NAS) approach for finding better SNN architectures. Inspired by recent NAS approaches that find the optimal architecture from activation patterns at initialization, we select the architecture that can represent diverse spike activation patterns across different data samples without training. Moreover, to further leverage the temporal information among the spikes, we search for feed forward connections as well as backward connections (i.e., temporal feedback connections) between layers. Interestingly, SNASNet found by our search algorithm achieves higher performance with backward connections, demonstrating the importance of designing SNN architecture for suitably using temporal information. We conduct extensive experiments on three image recognition benchmarks where we show that SNASNet achieves state-of-the-art performance with significantly lower timesteps (5 timesteps). Code is available at Github.

Citations (82)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.