Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Little Help Makes a Big Difference: Leveraging Active Learning to Improve Unsupervised Time Series Anomaly Detection (2201.10323v1)

Published 25 Jan 2022 in cs.LG

Abstract: Key Performance Indicators (KPI), which are essentially time series data, have been widely used to indicate the performance of telecom networks. Based on the given KPIs, a large set of anomaly detection algorithms have been deployed for detecting the unexpected network incidents. Generally, unsupervised anomaly detection algorithms gain more popularity than the supervised ones, due to the fact that labeling KPIs is extremely time- and resource-consuming, and error-prone. However, those unsupervised anomaly detection algorithms often suffer from excessive false alarms, especially in the presence of concept drifts resulting from network re-configurations or maintenance. To tackle this challenge and improve the overall performance of unsupervised anomaly detection algorithms, we propose to use active learning to introduce and benefit from the feedback of operators, who can verify the alarms (both false and true ones) and label the corresponding KPIs with reasonable effort. Specifically, we develop three query strategies to select the most informative and representative samples to label. We also develop an efficient method to update the weights of Isolation Forest and optimally adjust the decision threshold, so as to eventually improve the performance of detection model. The experiments with one public dataset and one proprietary dataset demonstrate that our active learning empowered anomaly detection pipeline could achieve performance gain, in terms of F1-score, more than 50% over the baseline algorithm. It also outperforms the existing active learning based methods by approximately 6%-10%, with significantly reduced budget (the ratio of samples to be labeled).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hamza Bodor (5 papers)
  2. Thai V. Hoang (4 papers)
  3. Zonghua Zhang (7 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.