Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Constant Inapproximability for PPA (2201.10011v2)

Published 24 Jan 2022 in cs.CC and cs.GT

Abstract: In the $\varepsilon$-Consensus-Halving problem, we are given $n$ probability measures $v_1, \dots, v_n$ on the interval $R = [0,1]$, and the goal is to partition $R$ into two parts $R+$ and $R-$ using at most $n$ cuts, so that $|v_i(R+) - v_i(R-)| \leq \varepsilon$ for all $i$. This fundamental fair division problem was the first natural problem shown to be complete for the class PPA, and all subsequent PPA-completeness results for other natural problems have been obtained by reducing from it. We show that $\varepsilon$-Consensus-Halving is PPA-complete even when the parameter $\varepsilon$ is a constant. In fact, we prove that this holds for any constant $\varepsilon < 1/5$. As a result, we obtain constant inapproximability results for all known natural PPA-complete problems, including Necklace-Splitting, the Discrete-Ham-Sandwich problem, two variants of the pizza sharing problem, and for finding fair independent sets in cycles and paths.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.