Constant Inapproximability for PPA (2201.10011v2)
Abstract: In the $\varepsilon$-Consensus-Halving problem, we are given $n$ probability measures $v_1, \dots, v_n$ on the interval $R = [0,1]$, and the goal is to partition $R$ into two parts $R+$ and $R-$ using at most $n$ cuts, so that $|v_i(R+) - v_i(R-)| \leq \varepsilon$ for all $i$. This fundamental fair division problem was the first natural problem shown to be complete for the class PPA, and all subsequent PPA-completeness results for other natural problems have been obtained by reducing from it. We show that $\varepsilon$-Consensus-Halving is PPA-complete even when the parameter $\varepsilon$ is a constant. In fact, we prove that this holds for any constant $\varepsilon < 1/5$. As a result, we obtain constant inapproximability results for all known natural PPA-complete problems, including Necklace-Splitting, the Discrete-Ham-Sandwich problem, two variants of the pizza sharing problem, and for finding fair independent sets in cycles and paths.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.