Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Classification Of Fake News Headline Based On Neural Networks (2201.09966v1)

Published 24 Jan 2022 in cs.CL and cs.AI

Abstract: Over the last few years, Text classification is one of the fundamental tasks in NLP in which the objective is to categorize text documents into one of the predefined classes. The news is full of our life. Therefore, news headlines classification is a crucial task to connect users with the right news. The news headline classification is a kind of text classification, which can be generally divided into three mainly parts: feature extraction, classifier selection, and evaluations. In this article, we use the dataset, containing news over a period of eighteen years provided by Kaggle platform to classify news headlines. We choose TF-IDF to extract features and neural network as the classifier, while the evaluation metrics is accuracy. From the experiment result, it is obvious that our NN model has the best performance among these models in the metrics of accuracy. The higher the accuracy is, the better performance the model will gain. Our NN model owns the accuracy 0.8622, which is highest accuracy among these four models. And it is 0.0134, 0.033, 0.080 higher than its of other models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.