Papers
Topics
Authors
Recent
2000 character limit reached

ReLSO: A Transformer-based Model for Latent Space Optimization and Generation of Proteins (2201.09948v2)

Published 24 Jan 2022 in cs.LG

Abstract: The development of powerful natural LLMs have increased the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution, and next-generation sequencing have allowed for the accumulation of large amounts of labeled fitness data. Leveraging these two trends, we introduce Regularized Latent Space Optimization (ReLSO), a deep transformer-based autoencoder which features a highly structured latent space that is trained to jointly generate sequences as well as predict fitness. Through regularized prediction heads, ReLSO introduces a powerful protein sequence encoder and novel approach for efficient fitness landscape traversal. Using ReLSO, we explicitly model the sequence-function landscape of large labeled datasets and generate new molecules by optimizing within the latent space using gradient-based methods. We evaluate this approach on several publicly-available protein datasets, including variant sets of anti-ranibizumab and GFP. We observe a greater sequence optimization efficiency (increase in fitness per optimization step) by ReLSO compared to other approaches, where ReLSO more robustly generates high-fitness sequences. Furthermore, the attention-based relationships learned by the jointly-trained ReLSO models provides a potential avenue towards sequence-level fitness attribution information.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.