Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A singular Riemannian geometry approach to Deep Neural Networks I. Theoretical foundations (2201.09656v2)

Published 17 Dec 2021 in cs.LG, cs.NE, and math.MG

Abstract: Deep Neural Networks are widely used for solving complex problems in several scientific areas, such as speech recognition, machine translation, image analysis. The strategies employed to investigate their theoretical properties mainly rely on Euclidean geometry, but in the last years new approaches based on Riemannian geometry have been developed. Motivated by some open problems, we study a particular sequence of maps between manifolds, with the last manifold of the sequence equipped with a Riemannian metric. We investigate the structures induced trough pullbacks on the other manifolds of the sequence and on some related quotients. In particular, we show that the pullbacks of the final Riemannian metric to any manifolds of the sequence is a degenerate Riemannian metric inducing a structure of pseudometric space, we show that the Kolmogorov quotient of this pseudometric space yields a smooth manifold, which is the base space of a particular vertical bundle. We investigate the theoretical properties of the maps of such sequence, eventually we focus on the case of maps between manifolds implementing neural networks of practical interest and we present some applications of the geometric framework we introduced in the first part of the paper.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.