Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Blockchain-Based Distributed Computational Resource Trading Strategy for Internet of Things Considering Multiple Preferences (2201.09539v4)

Published 24 Jan 2022 in cs.DC

Abstract: Computational task offloading based on edge computing can deal with the performance bottleneck of traditional cloud-based systems for Internet of things (IoT). To further optimize computing efficiency and resource allocation, collaborative offloading has been put forward to enable the offloading from edge devices to IoT terminal devices. However, there still lack incentive mechanisms to encourage participants to take over tasks from others. To counter this situation, this paper proposes a distributed computational resource trading strategy addressing multiple preferences of IoT users. Unlike most existing works, the objective of our trading strategy comprehensively considers different satisfaction degrees with task delay, energy consumption, price, and user reputation of both requesters and collaborators. The system design uses blockchain to enhance the decentralization, security, and automation. Compared with the trading method based on classical double auction matching mechanism, our trading strategy has more tasks offloaded and executed, and the trading results are friendlier to collaborators with good reputation.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.