Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Homotopic Policy Mirror Descent: Policy Convergence, Implicit Regularization, and Improved Sample Complexity (2201.09457v9)

Published 24 Jan 2022 in cs.LG, cs.AI, and math.OC

Abstract: We propose a new policy gradient method, named homotopic policy mirror descent (HPMD), for solving discounted, infinite horizon MDPs with finite state and action spaces. HPMD performs a mirror descent type policy update with an additional diminishing regularization term, and possesses several computational properties that seem to be new in the literature. We first establish the global linear convergence of HPMD instantiated with Kullback-Leibler divergence, for both the optimality gap, and a weighted distance to the set of optimal policies. Then local superlinear convergence is obtained for both quantities without any assumption. With local acceleration and diminishing regularization, we establish the first result among policy gradient methods on certifying and characterizing the limiting policy, by showing, with a non-asymptotic characterization, that the last-iterate policy converges to the unique optimal policy with the maximal entropy. We then extend all the aforementioned results to HPMD instantiated with a broad class of decomposable Bregman divergences, demonstrating the generality of the these computational properties. As a by product, we discover the finite-time exact convergence for some commonly used Bregman divergences, implying the continuing convergence of HPMD to the limiting policy even if the current policy is already optimal. Finally, we develop a stochastic version of HPMD and establish similar convergence properties. By exploiting the local acceleration, we show that for small optimality gap, a better than $\tilde{\mathcal{O}}(\left|\mathcal{S}\right| \left|\mathcal{A}\right| / \epsilon2)$ sample complexity holds with high probability, when assuming a generative model for policy evaluation.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.