Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Unsupervised Severely Deformed Mesh Reconstruction (DMR) from a Single-View Image (2201.09373v1)

Published 23 Jan 2022 in cs.CV

Abstract: Much progress has been made in the supervised learning of 3D reconstruction of rigid objects from multi-view images or a video. However, it is more challenging to reconstruct severely deformed objects from a single-view RGB image in an unsupervised manner. Although training-based methods, such as specific category-level training, have been shown to successfully reconstruct rigid objects and slightly deformed objects like birds from a single-view image, they cannot effectively handle severely deformed objects and neither can be applied to some downstream tasks in the real world due to the inconsistent semantic meaning of vertices, which are crucial in defining the adopted 3D templates of objects to be reconstructed. In this work, we introduce a template-based method to infer 3D shapes from a single-view image and apply the reconstructed mesh to a downstream task, i.e., absolute length measurement. Without using 3D ground truth, our method faithfully reconstructs 3D meshes and achieves state-of-the-art accuracy in a length measurement task on a severely deformed fish dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.