Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Neural Implicit Mapping via Nested Neighborhoods (2201.09147v2)

Published 22 Jan 2022 in cs.GR

Abstract: We introduce a novel approach for rendering static and dynamic 3D neural signed distance functions (SDF) in real-time. We rely on nested neighborhoods of zero-level sets of neural SDFs, and mappings between them. This framework supports animations and achieves real-time performance without the use of spatial data-structures. It consists of three uncoupled algorithms representing the rendering steps. The multiscale sphere tracing focuses on minimizing iteration time by using coarse approximations on earlier iterations. The neural normal mapping transfers details from a fine neural SDF to a surface nested on a neighborhood of its zero-level set. It is smooth and it does not depend on surface parametrizations. As a result, it can be used to fetch smooth normals for discrete surfaces such as meshes and to skip later iterations when sphere tracing level sets. Finally, we propose an algorithm for analytic normal calculation for MLPs and describe ways to obtain sequences of neural SDFs to use with the algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.