Papers
Topics
Authors
Recent
2000 character limit reached

Visual Information Guided Zero-Shot Paraphrase Generation (2201.09107v2)

Published 22 Jan 2022 in cs.CL and cs.AI

Abstract: Zero-shot paraphrase generation has drawn much attention as the large-scale high-quality paraphrase corpus is limited. Back-translation, also known as the pivot-based method, is typical to this end. Several works leverage different information as "pivot" such as language, semantic representation and so on. In this paper, we explore using visual information such as image as the "pivot" of back-translation. Different with the pipeline back-translation method, we propose visual information guided zero-shot paraphrase generation (ViPG) based only on paired image-caption data. It jointly trains an image captioning model and a paraphrasing model and leverage the image captioning model to guide the training of the paraphrasing model. Both automatic evaluation and human evaluation show our model can generate paraphrase with good relevancy, fluency and diversity, and image is a promising kind of pivot for zero-shot paraphrase generation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.