Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Chinese Word Segmentation with Heterogeneous Graph Neural Network (2201.08975v1)

Published 22 Jan 2022 in cs.CL

Abstract: In recent years, deep learning has achieved significant success in the Chinese word segmentation (CWS) task. Most of these methods improve the performance of CWS by leveraging external information, e.g., words, sub-words, syntax. However, existing approaches fail to effectively integrate the multi-level linguistic information and also ignore the structural feature of the external information. Therefore, in this paper, we proposed a framework to improve CWS, named HGNSeg. It exploits multi-level external information sufficiently with the pre-trained LLM and heterogeneous graph neural network. The experimental results on six benchmark datasets (e.g., Bakeoff 2005, Bakeoff 2008) validate that our approach can effectively improve the performance of Chinese word segmentation. Importantly, in cross-domain scenarios, our method also shows a strong ability to alleviate the out-of-vocabulary (OOV) problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.