Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Chinese Word Segmentation with Heterogeneous Graph Neural Network (2201.08975v1)

Published 22 Jan 2022 in cs.CL

Abstract: In recent years, deep learning has achieved significant success in the Chinese word segmentation (CWS) task. Most of these methods improve the performance of CWS by leveraging external information, e.g., words, sub-words, syntax. However, existing approaches fail to effectively integrate the multi-level linguistic information and also ignore the structural feature of the external information. Therefore, in this paper, we proposed a framework to improve CWS, named HGNSeg. It exploits multi-level external information sufficiently with the pre-trained LLM and heterogeneous graph neural network. The experimental results on six benchmark datasets (e.g., Bakeoff 2005, Bakeoff 2008) validate that our approach can effectively improve the performance of Chinese word segmentation. Importantly, in cross-domain scenarios, our method also shows a strong ability to alleviate the out-of-vocabulary (OOV) problem.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)