Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Gender Bias in Text: Labeled Datasets and Lexicons (2201.08675v2)

Published 21 Jan 2022 in cs.CL and cs.AI

Abstract: Language has a profound impact on our thoughts, perceptions, and conceptions of gender roles. Gender-inclusive language is, therefore, a key tool to promote social inclusion and contribute to achieving gender equality. Consequently, detecting and mitigating gender bias in texts is instrumental in halting its propagation and societal implications. However, there is a lack of gender bias datasets and lexicons for automating the detection of gender bias using supervised and unsupervised ML and NLP techniques. Therefore, the main contribution of this work is to publicly provide labeled datasets and exhaustive lexicons by collecting, annotating, and augmenting relevant sentences to facilitate the detection of gender bias in English text. Towards this end, we present an updated version of our previously proposed taxonomy by re-formalizing its structure, adding a new bias type, and mapping each bias subtype to an appropriate detection methodology. The released datasets and lexicons span multiple bias subtypes including: Generic He, Generic She, Explicit Marking of Sex, and Gendered Neologisms. We leveraged the use of word embedding models to further augment the collected lexicons.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.