Papers
Topics
Authors
Recent
2000 character limit reached

Statistical prediction of extreme events from small datasets (2201.08294v2)

Published 20 Jan 2022 in physics.flu-dyn, cs.LG, and nlin.CD

Abstract: We propose Echo State Networks (ESNs) to predict the statistics of extreme events in a turbulent flow. We train the ESNs on small datasets that lack information about the extreme events. We asses whether the networks are able to extrapolate from the small imperfect datasets and predict the heavy-tail statistics that describe the events. We find that the networks correctly predict the events and improve the statistics of the system with respect to the training data in almost all cases analysed. This opens up new possibilities for the statistical prediction of extreme events in turbulence.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.