Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Energy Efficient Distributed Federated Learning for 6G Networks (2201.08270v1)

Published 19 Jan 2022 in cs.LG, cs.DC, and cs.NI

Abstract: The provision of communication services via portable and mobile devices, such as aerial base stations, is a crucial concept to be realized in 5G/6G networks. Conventionally, IoT/edge devices need to transmit the data directly to the base station for training the model using machine learning techniques. The data transmission introduces privacy issues that might lead to security concerns and monetary losses. Recently, Federated learning was proposed to partially solve privacy issues via model-sharing with base station. However, the centralized nature of federated learning only allow the devices within the vicinity of base stations to share the trained models. Furthermore, the long-range communication compels the devices to increase transmission power, which raises the energy efficiency concerns. In this work, we propose distributed federated learning (DBFL) framework that overcomes the connectivity and energy efficiency issues for distant devices. The DBFL framework is compatible with mobile edge computing architecture that connects the devices in a distributed manner using clustering protocols. Experimental results show that the framework increases the classification performance by 7.4\% in comparison to conventional federated learning while reducing the energy consumption.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube