Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Informative Pseudo-Labeling for Graph Neural Networks with Few Labels (2201.07951v1)

Published 20 Jan 2022 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have achieved state-of-the-art results for semi-supervised node classification on graphs. Nevertheless, the challenge of how to effectively learn GNNs with very few labels is still under-explored. As one of the prevalent semi-supervised methods, pseudo-labeling has been proposed to explicitly address the label scarcity problem. It aims to augment the training set with pseudo-labeled unlabeled nodes with high confidence so as to re-train a supervised model in a self-training cycle. However, the existing pseudo-labeling approaches often suffer from two major drawbacks. First, they tend to conservatively expand the label set by selecting only high-confidence unlabeled nodes without assessing their informativeness. Unfortunately, those high-confidence nodes often convey overlapping information with given labels, leading to minor improvements for model re-training. Second, these methods incorporate pseudo-labels to the same loss function with genuine labels, ignoring their distinct contributions to the classification task. In this paper, we propose a novel informative pseudo-labeling framework, called InfoGNN, to facilitate learning of GNNs with extremely few labels. Our key idea is to pseudo label the most informative nodes that can maximally represent the local neighborhoods via mutual information maximization. To mitigate the potential label noise and class-imbalance problem arising from pseudo labeling, we also carefully devise a generalized cross entropy loss with a class-balanced regularization to incorporate generated pseudo labels into model re-training. Extensive experiments on six real-world graph datasets demonstrate that our proposed approach significantly outperforms state-of-the-art baselines and strong self-supervised methods on graphs.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.