Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Q-ViT: Fully Differentiable Quantization for Vision Transformer (2201.07703v2)

Published 19 Jan 2022 in cs.CV

Abstract: In this paper, we propose a fully differentiable quantization method for vision transformer (ViT) named as Q-ViT, in which both of the quantization scales and bit-widths are learnable parameters. Specifically, based on our observation that heads in ViT display different quantization robustness, we leverage head-wise bit-width to squeeze the size of Q-ViT while preserving performance. In addition, we propose a novel technique named switchable scale to resolve the convergence problem in the joint training of quantization scales and bit-widths. In this way, Q-ViT pushes the limits of ViT quantization to 3-bit without heavy performance drop. Moreover, we analyze the quantization robustness of every architecture component of ViT and show that the Multi-head Self-Attention (MSA) and the Gaussian Error Linear Units (GELU) are the key aspects for ViT quantization. This study provides some insights for further research about ViT quantization. Extensive experiments on different ViT models, such as DeiT and Swin Transformer show the effectiveness of our quantization method. In particular, our method outperforms the state-of-the-art uniform quantization method by 1.5% on DeiT-Tiny.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.