Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tensor Ranks for the Pedestrian for Dimension Reduction and Disentangling Interactions (2201.07473v1)

Published 19 Jan 2022 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: A tensor is a multi-way array that can represent, in addition to a data set, the expression of a joint law or a multivariate function. As such it contains the description of the interactions between the variables corresponding to each of the entries. The rank of a tensor extends to arrays with more than two entries the notion of rank of a matrix, bearing in mind that there are several approaches to build such an extension. When the rank is one, the variables are separated, and when it is low, the variables are weakly coupled. Many calculations are simpler on tensors of low rank. Furthermore, approximating a given tensor by a low-rank tensor makes it possible to compute some characteristics of a table, such as the partition function when it is a joint law. In this note, we present in detail an integrated and progressive approach to approximate a given tensor by a tensor of lower rank, through a systematic use of tensor algebra. The notion of tensor is rigorously defined, then elementary but useful operations on tensors are presented. After recalling several different notions for extending the rank to tensors, we show how these elementary operations can be combined to build best low rank approximation algorithms. The last chapter is devoted to applying this approach to tensors constructed as the discretisation of a multivariate function, to show that on a Cartesian grid, the rank of such tensors is expected to be low.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)