Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Convergence Rates of Policy Gradient Methods (2201.07443v2)

Published 19 Jan 2022 in math.OC and cs.LG

Abstract: We consider infinite-horizon discounted Markov decision problems with finite state and action spaces and study the convergence rates of the projected policy gradient method and a general class of policy mirror descent methods, all with direct parametrization in the policy space. First, we develop a theory of weak gradient-mapping dominance and use it to prove sharper sublinear convergence rate of the projected policy gradient method. Then we show that with geometrically increasing step sizes, a general class of policy mirror descent methods, including the natural policy gradient method and a projected Q-descent method, all enjoy a linear rate of convergence without relying on entropy or other strongly convex regularization. Finally, we also analyze the convergence rate of an inexact policy mirror descent method and estimate its sample complexity under a simple generative model.

Citations (83)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)