Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Federated Clustering: A Federated Fuzzy $c$-Means Algorithm (FFCM) (2201.07316v1)

Published 18 Jan 2022 in cs.LG

Abstract: Federated Learning (FL) is a setting where multiple parties with distributed data collaborate in training a joint Machine Learning (ML) model while keeping all data local at the parties. Federated clustering is an area of research within FL that is concerned with grouping together data that is globally similar while keeping all data local. We describe how this area of research can be of interest in itself, or how it helps addressing issues like non-independently-identically-distributed (i.i.d.) data in supervised FL frameworks. The focus of this work, however, is an extension of the federated fuzzy $c$-means algorithm to the FL setting (FFCM) as a contribution towards federated clustering. We propose two methods to calculate global cluster centers and evaluate their behaviour through challenging numerical experiments. We observe that one of the methods is able to identify good global clusters even in challenging scenarios, but also acknowledge that many challenges remain open.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.