Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Advancing Deep Residual Learning by Solving the Crux of Degradation in Spiking Neural Networks (2201.07209v2)

Published 9 Dec 2021 in cs.NE and cs.AI

Abstract: Despite the rapid progress of neuromorphic computing, the inadequate depth and the resulting insufficient representation power of spiking neural networks (SNNs) severely restrict their application scope in practice. Residual learning and shortcuts have been evidenced as an important approach for training deep neural networks, but rarely did previous work assess their applicability to the characteristics of spike-based communication and spatiotemporal dynamics. This negligence leads to impeded information flow and the accompanying degradation problem. In this paper, we identify the crux and then propose a novel residual block for SNNs, which is able to significantly extend the depth of directly trained SNNs, e.g., up to 482 layers on CIFAR-10 and 104 layers on ImageNet, without observing any slight degradation problem. We validate the effectiveness of our methods on both frame-based and neuromorphic datasets, and our SRM-ResNet104 achieves a superior result of 76.02% accuracy on ImageNet, the first time in the domain of directly trained SNNs. The great energy efficiency is estimated and the resulting networks need on average only one spike per neuron for classifying an input sample. We believe our powerful and scalable modeling will provide a strong support for further exploration of SNNs.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.