Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bridging the Language Gap: An Empirical Study of Bindings for Open Source Machine Learning Libraries Across Software Package Ecosystems (2201.07201v2)

Published 18 Jan 2022 in cs.SE and cs.LG

Abstract: Open source ML libraries enable developers to integrate advanced ML functionality into their own applications. However, popular ML libraries, such as TensorFlow, are not available natively in all programming languages and software package ecosystems. Hence, developers who wish to use an ML library which is not available in their programming language or ecosystem of choice, may need to resort to using a so-called binding library (or binding). Bindings provide support across programming languages and package ecosystems for reusing a host library. For example, the Keras .NET binding provides support for the Keras library in the NuGet (.NET) ecosystem even though the Keras library was written in Python. In this paper, we collect 2,436 cross-ecosystem bindings for 546 ML libraries across 13 software package ecosystems by using an approach called BindFind, which can automatically identify bindings and link them to their host libraries. Furthermore, we conduct an in-depth study of 133 cross-ecosystem bindings and their development for 40 popular open source ML libraries. Our findings reveal that the majority of ML library bindings are maintained by the community, with npm being the most popular ecosystem for these bindings. Our study also indicates that most bindings cover only a limited range of the host library's releases, often experience considerable delays in supporting new releases, and have widespread technical lag. Our findings highlight key factors to consider for developers integrating bindings for ML libraries and open avenues for researchers to further investigate bindings in software package ecosystems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.