Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimizing Active Learning for Low Annotation Budgets (2201.07200v1)

Published 18 Jan 2022 in cs.CV

Abstract: When we can not assume a large amount of annotated data , active learning is a good strategy. It consists in learning a model on a small amount of annotated data (annotation budget) and in choosing the best set of points to annotate in order to improve the previous model and gain in generalization. In deep learning, active learning is usually implemented as an iterative process in which successive deep models are updated via fine tuning, but it still poses some issues. First, the initial batch of annotated images has to be sufficiently large to train a deep model. Such an assumption is strong, especially when the total annotation budget is reduced. We tackle this issue by using an approach inspired by transfer learning. A pre-trained model is used as a feature extractor and only shallow classifiers are learned during the active iterations. The second issue is the effectiveness of probability or feature estimates of early models for AL task. Samples are generally selected for annotation using acquisition functions based only on the last learned model. We introduce a novel acquisition function which exploits the iterative nature of AL process to select samples in a more robust fashion. Samples for which there is a maximum shift towards uncertainty between the last two learned models predictions are favored. A diversification step is added to select samples from different regions of the classification space and thus introduces a representativeness component in our approach. Evaluation is done against competitive methods with three balanced and imbalanced datasets and outperforms them.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.