Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Time Series Generation with Masked Autoencoder (2201.07006v3)

Published 14 Jan 2022 in cs.LG

Abstract: This paper shows that masked autoencoder with extrapolator (ExtraMAE) is a scalable self-supervised model for time series generation. ExtraMAE randomly masks some patches of the original time series and learns temporal dynamics by recovering the masked patches. Our approach has two core designs. First, ExtraMAE is self-supervised. Supervision allows ExtraMAE to effectively and efficiently capture the temporal dynamics of the original time series. Second, ExtraMAE proposes an extrapolator to disentangle two jobs of the decoder: recovering latent representations and mapping them back into the feature space. These unique designs enable ExtraMAE to consistently and significantly outperform state-of-the-art (SoTA) benchmarks in time series generation. The lightweight architecture also makes ExtraMAE fast and scalable. ExtraMAE shows outstanding behavior in various downstream tasks such as time series classification, prediction, and imputation. As a self-supervised generative model, ExtraMAE allows explicit management of the synthetic data. We hope this paper will usher in a new era of time series generation with self-supervised models.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.