On the Equivalence of Causal Models: A Category-Theoretic Approach (2201.06981v1)
Abstract: We develop a category-theoretic criterion for determining the equivalence of causal models having different but homomorphic directed acyclic graphs over discrete variables. Following Jacobs et al. (2019), we define a causal model as a probabilistic interpretation of a causal string diagram, i.e., a functor from the ``syntactic'' category $\textsf{Syn}_G$ of graph $G$ to the category $\textsf{Stoch}$ of finite sets and stochastic matrices. The equivalence of causal models is then defined in terms of a natural transformation or isomorphism between two such functors, which we call a $\Phi$-abstraction and $\Phi$-equivalence, respectively. It is shown that when one model is a $\Phi$-abstraction of another, the intervention calculus of the former can be consistently translated into that of the latter. We also identify the condition under which a model accommodates a $\Phi$-abstraction, when transformations are deterministic.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.