Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Scalable In Situ Compression of Transient Simulation Data Using Time-Dependent Bases (2201.06958v1)

Published 10 Jan 2022 in cs.CE and physics.comp-ph

Abstract: Large-scale simulations of time-dependent problems generate a massive amount of data and with the explosive increase in computational resources the size of the data generated by these simulations has increased significantly. This has imposed severe limitations on the amount of data that can be stored and has elevated the issue of input/output (I/O) into one of the major bottlenecks of high-performance computing. In this work, we present an in situ compression technique to reduce the size of the data storage by orders of magnitude. This methodology is based on time-dependent subspaces and it extracts low-rank structures from multidimensional streaming data by decomposing the data into a set of time-dependent bases and a core tensor. We derive closed-form evolution equations for the core tensor as well as the time-dependent bases. The presented methodology does not require the data history and the computational cost of its extractions scales linearly with the size of data -- making it suitable for large-scale streaming datasets. To control the compression error, we present an adaptive strategy to add/remove modes to maintain the reconstruction error below a given threshold. We present four demonstration cases: (i) analytical example, (ii) incompressible unsteady reactive flow, (iii) stochastic turbulent reactive flow, and (iv) three-dimensional turbulent channel flow.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.