Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge Tracing: A Survey (2201.06953v1)

Published 8 Jan 2022 in cs.CY, cs.AI, and cs.LG

Abstract: Humans ability to transfer knowledge through teaching is one of the essential aspects for human intelligence. A human teacher can track the knowledge of students to customize the teaching on students needs. With the rise of online education platforms, there is a similar need for machines to track the knowledge of students and tailor their learning experience. This is known as the Knowledge Tracing (KT) problem in the literature. Effectively solving the KT problem would unlock the potential of computer-aided education applications such as intelligent tutoring systems, curriculum learning, and learning materials' recommendation. Moreover, from a more general viewpoint, a student may represent any kind of intelligent agents including both human and artificial agents. Thus, the potential of KT can be extended to any machine teaching application scenarios which seek for customizing the learning experience for a student agent (i.e., a machine learning model). In this paper, we provide a comprehensive and systematic review for the KT literature. We cover a broad range of methods starting from the early attempts to the recent state-of-the-art methods using deep learning, while highlighting the theoretical aspects of models and the characteristics of benchmark datasets. Besides these, we shed light on key modelling differences between closely related methods and summarize them in an easy-to-understand format. Finally, we discuss current research gaps in the KT literature and possible future research and application directions.

Citations (151)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.