Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

RePre: Improving Self-Supervised Vision Transformer with Reconstructive Pre-training (2201.06857v2)

Published 18 Jan 2022 in cs.CV and cs.AI

Abstract: Recently, self-supervised vision transformers have attracted unprecedented attention for their impressive representation learning ability. However, the dominant method, contrastive learning, mainly relies on an instance discrimination pretext task, which learns a global understanding of the image. This paper incorporates local feature learning into self-supervised vision transformers via Reconstructive Pre-training (RePre). Our RePre extends contrastive frameworks by adding a branch for reconstructing raw image pixels in parallel with the existing contrastive objective. RePre is equipped with a lightweight convolution-based decoder that fuses the multi-hierarchy features from the transformer encoder. The multi-hierarchy features provide rich supervisions from low to high semantic information, which are crucial for our RePre. Our RePre brings decent improvements on various contrastive frameworks with different vision transformer architectures. Transfer performance in downstream tasks outperforms supervised pre-training and state-of-the-art (SOTA) self-supervised counterparts.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.