Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

High-Level Synthesis Performance Prediction using GNNs: Benchmarking, Modeling, and Advancing (2201.06848v1)

Published 18 Jan 2022 in cs.LG and cs.AR

Abstract: Agile hardware development requires fast and accurate circuit quality evaluation from early design stages. Existing work of high-level synthesis (HLS) performance prediction usually needs extensive feature engineering after the synthesis process. To expedite circuit evaluation from as earlier design stage as possible, we propose a rapid and accurate performance modeling, exploiting the representation power of graph neural networks (GNNs) by representing C/C++ programs as graphs. The contribution of this work is three-fold. First, we build a standard benchmark containing 40k C synthesizable programs, which includes both synthetic programs and three sets of real-world HLS benchmarks. Each program is implemented on FPGA to generate ground-truth performance metrics. Second, we formally formulate the HLS performance prediction problem on graphs, and propose multiple modeling strategies with GNNs that leverage different trade-offs between prediction timeliness (early/late prediction) and accuracy. Third, we further propose a novel hierarchical GNN that does not sacrifice timeliness but largely improves prediction accuracy, significantly outperforming HLS tools. We apply extensive evaluations for both synthetic and unseen real-case programs; our proposed predictor largely outperforms HLS by up to 40X and excels existing predictors by 2X to 5X in terms of resource usage and timing prediction.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.