Weighted $\ell_q$ approximation problems on the ball and on the sphere (2201.06705v1)
Abstract: Let $L_{q,\mu},\, 1\le q<\infty, \ \mu\ge0,$ denote the weighted $L_q$ space with the classical Jacobi weight $w_\mu$ on the ball $\Bbb Bd$. We consider the weighted least $\ell_q$ approximation problem for a given $L_{q,\mu}$-Marcinkiewicz-Zygmund family on $\Bbb Bd$. We obtain the weighted least $\ell_q$ approximation errors for the weighted Sobolev space $W_{q,\mu}r$, $r>(d+2\mu)/q$, which are order optimal. We also discuss the least squares quadrature induced by an $L_{2,\mu}$-Marcinkiewicz-Zygmund family, and get the quadrature errors for $W_{2,\mu}r$, $r>(d+2\mu)/2$, which are also order optimal. Meanwhile, we give the corresponding the weighted least $\ell_q$ approximation theorem and the least squares quadrature errors on the sphere.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.