Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improved Approximation and Scalability for Fair Max-Min Diversification (2201.06678v1)

Published 18 Jan 2022 in cs.DS

Abstract: Given an $n$-point metric space $(\mathcal{X},d)$ where each point belongs to one of $m=O(1)$ different categories or groups and a set of integers $k_1, \ldots, k_m$, the fair Max-Min diversification problem is to select $k_i$ points belonging to category $i\in [m]$, such that the minimum pairwise distance between selected points is maximized. The problem was introduced by Moumoulidou et al. [ICDT 2021] and is motivated by the need to down-sample large data sets in various applications so that the derived sample achieves a balance over diversity, i.e., the minimum distance between a pair of selected points, and fairness, i.e., ensuring enough points of each category are included. We prove the following results: 1. We first consider general metric spaces. We present a randomized polynomial time algorithm that returns a factor $2$-approximation to the diversity but only satisfies the fairness constraints in expectation. Building upon this result, we present a $6$-approximation that is guaranteed to satisfy the fairness constraints up to a factor $1-\epsilon$ for any constant $\epsilon$. We also present a linear time algorithm returning an $m+1$ approximation with exact fairness. The best previous result was a $3m-1$ approximation. 2. We then focus on Euclidean metrics. We first show that the problem can be solved exactly in one dimension. For constant dimensions, categories and any constant $\epsilon>0$, we present a $1+\epsilon$ approximation algorithm that runs in $O(nk) + 2{O(k)}$ time where $k=k_1+\ldots+k_m$. We can improve the running time to $O(nk)+ poly(k)$ at the expense of only picking $(1-\epsilon) k_i$ points from category $i\in [m]$. Finally, we present algorithms suitable to processing massive data sets including single-pass data stream algorithms and composable coresets for the distributed processing.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.