Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RosneT: A Block Tensor Algebra Library for Out-of-Core Quantum Computing Simulation (2201.06620v1)

Published 17 Jan 2022 in quant-ph and cs.DC

Abstract: With the advent of more powerful Quantum Computers, the need for larger Quantum Simulations has boosted. As the amount of resources grows exponentially with size of the target system Tensor Networks emerge as an optimal framework with which we represent Quantum States in tensor factorizations. As the extent of a tensor network increases, so does the size of intermediate tensors requiring HPC tools for their manipulation. Simulations of medium-sized circuits cannot fit on local memory, and solutions for distributed contraction of tensors are scarce. In this work we present RosneT, a library for distributed, out-of-core block tensor algebra. We use the PyCOMPSs programming model to transform tensor operations into a collection of tasks handled by the COMPSs runtime, targeting executions in existing and upcoming Exascale supercomputers. We report results validating our approach showing good scalability in simulations of Quantum circuits of up to 53 qubits.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.