Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Interactive Contrastive Learning for Self-supervised Entity Alignment (2201.06225v2)

Published 17 Jan 2022 in cs.CL and cs.AI

Abstract: Self-supervised entity alignment (EA) aims to link equivalent entities across different knowledge graphs (KGs) without seed alignments. The current SOTA self-supervised EA method draws inspiration from contrastive learning, originally designed in computer vision based on instance discrimination and contrastive loss, and suffers from two shortcomings. Firstly, it puts unidirectional emphasis on pushing sampled negative entities far away rather than pulling positively aligned pairs close, as is done in the well-established supervised EA. Secondly, KGs contain rich side information (e.g., entity description), and how to effectively leverage those information has not been adequately investigated in self-supervised EA. In this paper, we propose an interactive contrastive learning model for self-supervised EA. The model encodes not only structures and semantics of entities (including entity name, entity description, and entity neighborhood), but also conducts cross-KG contrastive learning by building pseudo-aligned entity pairs. Experimental results show that our approach outperforms previous best self-supervised results by a large margin (over 9% average improvement) and performs on par with previous SOTA supervised counterparts, demonstrating the effectiveness of the interactive contrastive learning for self-supervised EA.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube