Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SQUIRE: A Sequence-to-sequence Framework for Multi-hop Knowledge Graph Reasoning (2201.06206v3)

Published 17 Jan 2022 in cs.CL and cs.SI

Abstract: Multi-hop knowledge graph (KG) reasoning has been widely studied in recent years to provide interpretable predictions on missing links with evidential paths. Most previous works use reinforcement learning (RL) based methods that learn to navigate the path towards the target entity. However, these methods suffer from slow and poor convergence, and they may fail to infer a certain path when there is a missing edge along the path. Here we present SQUIRE, the first Sequence-to-sequence based multi-hop reasoning framework, which utilizes an encoder-decoder Transformer structure to translate the query to a path. Our framework brings about two benefits: (1) It can learn and predict in an end-to-end fashion, which gives better and faster convergence; (2) Our Transformer model does not rely on existing edges to generate the path, and has the flexibility to complete missing edges along the path, especially in sparse KGs. Experiments on standard and sparse KGs show that our approach yields significant improvement over prior methods, while converging 4x-7x faster.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.