Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SDT-DCSCN for Simultaneous Super-Resolution and Deblurring of Text Images (2201.05865v1)

Published 15 Jan 2022 in eess.IV and cs.CV

Abstract: Deep convolutional neural networks (Deep CNN) have achieved hopeful performance for single image super-resolution. In particular, the Deep CNN skip Connection and Network in Network (DCSCN) architecture has been successfully applied to natural images super-resolution. In this work we propose an approach called SDT-DCSCN that jointly performs super-resolution and deblurring of low-resolution blurry text images based on DCSCN. Our approach uses subsampled blurry images in the input and original sharp images as ground truth. The used architecture is consists of a higher number of filters in the input CNN layer to a better analysis of the text details. The quantitative and qualitative evaluation on different datasets prove the high performance of our model to reconstruct high-resolution and sharp text images. In addition, in terms of computational time, our proposed method gives competitive performance compared to state of the art methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.