Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Block Policy Mirror Descent (2201.05756v3)

Published 15 Jan 2022 in cs.LG, cs.AI, and math.OC

Abstract: In this paper, we present a new policy gradient (PG) methods, namely the block policy mirror descent (BPMD) method for solving a class of regularized reinforcement learning (RL) problems with (strongly)-convex regularizers. Compared to the traditional PG methods with a batch update rule, which visits and updates the policy for every state, BPMD method has cheap per-iteration computation via a partial update rule that performs the policy update on a sampled state. Despite the nonconvex nature of the problem and a partial update rule, we provide a unified analysis for several sampling schemes, and show that BPMD achieves fast linear convergence to the global optimality. In particular, uniform sampling leads to comparable worst-case total computational complexity as batch PG methods. A necessary and sufficient condition for convergence with on-policy sampling is also identified. With a hybrid sampling scheme, we further show that BPMD enjoys potential instance-dependent acceleration, leading to improved dependence on the state space and consequently outperforming batch PG methods. We then extend BPMD methods to the stochastic setting, by utilizing stochastic first-order information constructed from samples. With a generative model, $\tilde{\mathcal{O}}(\left\lvert \mathcal{S}\right\rvert \left\lvert \mathcal{A}\right\rvert /\epsilon)$ (resp. $\tilde{\mathcal{O}}(\left\lvert \mathcal{S}\right\rvert \left\lvert \mathcal{A} \right\rvert /\epsilon2)$) sample complexities are established for the strongly-convex (resp. non-strongly-convex) regularizers, where $\epsilon$ denotes the target accuracy. To the best of our knowledge, this is the first time that block coordinate descent methods have been developed and analyzed for policy optimization in reinforcement learning, which provides a new perspective on solving large-scale RL problems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube