Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Moses: Efficient Exploitation of Cross-device Transferable Features for Tensor Program Optimization (2201.05752v1)

Published 15 Jan 2022 in cs.LG and cs.PL

Abstract: Achieving efficient execution of machine learning models has attracted significant attention recently. To generate tensor programs efficiently, a key component of DNN compilers is the cost model that can predict the performance of each configuration on specific devices. However, due to the rapid emergence of hardware platforms, it is increasingly labor-intensive to train domain-specific predictors for every new platform. Besides, current design of cost models cannot provide transferable features between different hardware accelerators efficiently and effectively. In this paper, we propose Moses, a simple and efficient design based on the lottery ticket hypothesis, which fully takes advantage of the features transferable to the target device via domain adaptation. Compared with state-of-the-art approaches, Moses achieves up to 1.53X efficiency gain in the search stage and 1.41X inference speedup on challenging DNN benchmarks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.